Emerging Energy Nanomaterials & Devices (EEND)                                                                               

                                       Jinping LIU (刘金平), Ph.D. & Professor                                    
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
School of Chemistry,Chemical Engineering and Life Science,
Wuhan University of Technology, P.R. China
Email: liujp@whut.edu.cn;liujpwhut@163.com



Welcome to Dr. Liu's Research Group


    刘金平教授入选“2014年中国高被引学者(Most Cited Chinese Researchers)榜单----材料科学领域。

    Our Adv. Mater. 2012, 24, 5166 paper is No.3 among the ten most cited papers of 2012–2013 in Advanced Materials, according to a recent Advanced Materials Editorial: Adv. Mater. 2015, 27, 12 (No.1 in Mainland China).

     MaterialsView China储能专辑对课题组研究的介绍

   We are involved in the research of advanced nanomaterials with specific application field in energy storage and conversion. Our research focuses on the basic, fundamental science of several technologies and devices that will impact our society in the future. Energy devices such as supercapacitors, batteries, solar cells, PEC etc. are some of the areas we broadly cover at the present time. In particular, we have great interest in the application of ordered nanostructure (nanowire/nanotube, etc.) arrays or films in these emerging areas.

    Dr. Liu cordially invite you to share your exciting experience of the research with us. 

       **We plan to recruit 1-2 postgraduates every year. Please contact me if you have interest in our research.

   ***We have close collaborations with professors at NTU (Singapore), National Central for Nanoscience & Technology, Huazhong Univeristy of Science & Technology(HUST), Tongji University, Wuhan University,  Hunan University, and  Kyung Hee University, Seoul National University (Korea), etc. including joint training of graduate students. We also have preliminary collaboration with scholars and scientists in America, Australia and Japan, and can recommend excellent graduates to do visiting research.

    Welcome students (Chemistry, Material Science, or Physics background) with passion and ambition in Nanoscience & Nanotechnology to join us.


Recent publication:

Asymmetric Supercapacitor Device from CoO @ PPy nanowire arrayNano Letters, 2013, 13, 2078.                                             

Mechanistic investigation of the charge storage process of pseudocapacitive nano-metal oxide

Electrochim. Acta, 2014, 120, 52-56.

High-Performance Li-ion Full Cell Based on Synergistic Li4Ti5O12-Rutile TiO2 Hybrid Nanowire ArrayRSC Advances, 2014,4,12950.


Principal Investigator


Add as friend
Send message

Focus and Work Hard! Passion, Passion

  • Wuhan
  • China

About me:
(i) Nanostructure Arrays/Films on Conductive Substrates
(ii) Energy Devices: Supercapacitors, Batteries & PEC.
(iii) Energy Storage Mechanism and Related Physics


Selected Publications

(1) Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12, Scientific Reports, 2015, 5, 7780.

(2) Construction of High-Capacitance 3D CoO @ Polypyrrole  Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor, Nano Letters, 2013, 13, 2078.

(3) Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage, Advanced Materials, 2012, 24, 5166 (综述论文)  

(4) Co3O4 Nanowire @ MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials, Advanced Materials, 2011, 23, 2076 (卷首插画论文,被 "Nature Asia Materials" and "Nanowerk"点亮)

(5) CNTs/Ni Hybrid Nanostructured Arrays: Synthesis and Application as High-Performance Electrode Materials for Pseudocapacitor, Energy & Environ. Sci., 2011, 4, 5000.

(6) Layered Double Hydroxide Nano- and Microstructures Grown Directly on Metal Substrates and Their Calcined Products for Application as Li-Ion Battery Electrodes, Advanced Functional Materials, 2008, 18, 1448.

(7) Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium StorageChem. Mater.2010, 22, 212-217. 

(8) Building One-Dimensional Oxide Nanostructure Arrays on Conductive Metal Substrates for Lithium-Ion Battery Anodes, Nanoscale2011, 3, 45 (邀请综述)

(9) Direct Growth of SnO2 Nanorod Array Electrode for Lithium-ion Batteries, Journal of Materials Chemistry2009, 19, 1859-1864.



Loading …
  • Server: web1.webjam.com
  • Total queries:
  • Serialization time: 23ms
  • Execution time: 29ms
  • XSLT time: $$$XSLT$$$ms